The fractional stochastic heat equation driven by time-space white noise

نویسندگان

چکیده

Abstract We study the stochastic time-fractional heat equation $$\begin{aligned} \frac{\partial ^{\alpha }}{\partial t^{\alpha }}Y(t,x)=\lambda \varDelta Y(t,x)+\sigma W(t,x);\; (t,x)\in (0,\infty )\times \mathbb {R}^{d}, \end{aligned}$$ ∂ α t Y ( , x ) = λ Δ + σ W ; ∈ 0 ∞ × R d where $$d\in {N}=\{1,2,...\}$$ N { 1 2 . } and $$\frac{\partial }}$$ is Caputo derivative of order $$\alpha \in (0,2)$$ , $$\lambda >0$$ > $$\sigma {R}$$ are given constants. Here $$\varDelta $$ denotes Laplacian operator, W ( t x ) time-space white noise, defined by W(t,x)=\frac{\partial }{\partial t}\frac{\partial ^{d}B(t,x)}{\partial x_{1}...\partial x_{d}}, B $$B(t,x)=B(t,x,\omega ); t\ge 0, {R}^d, \omega \varOmega ω ≥ Ω being Brownian motion with probability law $$\mathbb {P}$$ P . consider (0.1) in sense distribution, we find an explicit expression for $$\mathcal {S}'$$ S ′ -valued solution Y ), space tempered distributions. Following terminology Y. Hu [11], say that mild if $$Y(t,x) L^2(\mathbb {P})$$ L all It well-known classical case = 1$$ only dimension $$d=1$$ prove (1,2)$$ or $$d=2$$ If < < not any d

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Heat Equation Driven by Fractional Noise and Local Time

The aim of this paper is to study the d-dimensional stochastic heat equation with a multiplicative Gaussian noise which is white in space and it has the covariance of a fractional Brownian motion with Hurst parameter H ∈ (0, 1) in time. Two types of equations are considered. First we consider the equation in the Itô-Skorohod sense, and later in the Stratonovich sense. An explicit chaos developm...

متن کامل

Feynman-Kac formula for fractional heat equation driven by fractional white noise

In this paper we obtain a Feynman-Kac formula for the solution of a fractional stochastic heat equation driven by fractional noise. One of the main difficulties is to show the exponential integrability of some singular nonlinear functionals of symmetric stable Lévy motion. This difficulty will be overcome by a technique developed in the framework of large deviation. This Feynman-Kac formula is ...

متن کامل

Discretization of Space-time White Noise in the Heat Equation

We consider discretizations of a periodic, one-dimensional spatial white noise. We then propose a particular spectral discretization of space-time white noise and use it to force the heat equation with periodic boundary conditions. We are able to solve explicitly the discretized equations, and then find explicitly the probability distribution of the stationary solution of the heat equation forc...

متن کامل

Exact variations for stochastic heat equations driven by space–time white noise

This paper calculates the exact quadratic variation in space and quartic variation in time for the solutions to a one dimensional stochastic heat equation driven by a multiplicative space-time white noise.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractional Calculus and Applied Analysis

سال: 2023

ISSN: ['1311-0454', '1314-2224']

DOI: https://doi.org/10.1007/s13540-023-00134-7